3.234 \(\int \frac{1+x^2}{\sqrt{1+x^2+x^4}} \, dx\)

Optimal. Leaf size=115 \[ \frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}(x),\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}}+\frac{\sqrt{x^4+x^2+1} x}{x^2+1}-\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}} \]

[Out]

(x*Sqrt[1 + x^2 + x^4])/(1 + x^2) - ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/
Sqrt[1 + x^2 + x^4] + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4])/Sqrt[1 + x^2 +
 x^4]

________________________________________________________________________________________

Rubi [A]  time = 0.0221631, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1197, 1103, 1195} \[ \frac{\sqrt{x^4+x^2+1} x}{x^2+1}+\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}}-\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^2)/Sqrt[1 + x^2 + x^4],x]

[Out]

(x*Sqrt[1 + x^2 + x^4])/(1 + x^2) - ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/
Sqrt[1 + x^2 + x^4] + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4])/Sqrt[1 + x^2 +
 x^4]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1+x^2}{\sqrt{1+x^2+x^4}} \, dx &=2 \int \frac{1}{\sqrt{1+x^2+x^4}} \, dx-\int \frac{1-x^2}{\sqrt{1+x^2+x^4}} \, dx\\ &=\frac{x \sqrt{1+x^2+x^4}}{1+x^2}-\frac{\left (1+x^2\right ) \sqrt{\frac{1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{1+x^2+x^4}}+\frac{\left (1+x^2\right ) \sqrt{\frac{1+x^2+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{1+x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0701471, size = 94, normalized size = 0.82 \[ \frac{\sqrt [3]{-1} \sqrt{\sqrt [3]{-1} x^2+1} \sqrt{1-(-1)^{2/3} x^2} \left (\left (\sqrt [3]{-1}-1\right ) \text{EllipticF}\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )+E\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )\right )}{\sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^2)/Sqrt[1 + x^2 + x^4],x]

[Out]

((-1)^(1/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*(EllipticE[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]
+ (-1 + (-1)^(1/3))*EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]))/Sqrt[1 + x^2 + x^4]

________________________________________________________________________________________

Maple [C]  time = 0.005, size = 205, normalized size = 1.8 \begin{align*} -4\,{\frac{\sqrt{1- \left ( -1/2+i/2\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -1/2-i/2\sqrt{3} \right ){x}^{2}} \left ({\it EllipticF} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) -{\it EllipticE} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) \right ) }{\sqrt{-2+2\,i\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1} \left ( i\sqrt{3}+1 \right ) }}+2\,{\frac{\sqrt{1- \left ( -1/2+i/2\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -1/2-i/2\sqrt{3} \right ){x}^{2}}{\it EllipticF} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) }{\sqrt{-2+2\,i\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)/(x^4+x^2+1)^(1/2),x)

[Out]

-4/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1
/2)/(I*3^(1/2)+1)*(EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-EllipticE(1/2*x*(-2+2*I*
3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2)))+2/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1
/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/
2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} + 1}{\sqrt{x^{4} + x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2 + 1)/sqrt(x^4 + x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{2} + 1}{\sqrt{x^{4} + x^{2} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral((x^2 + 1)/sqrt(x^4 + x^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} + 1}{\sqrt{\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)/(x**4+x**2+1)**(1/2),x)

[Out]

Integral((x**2 + 1)/sqrt((x**2 - x + 1)*(x**2 + x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} + 1}{\sqrt{x^{4} + x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x^2 + 1)/sqrt(x^4 + x^2 + 1), x)